D DYNAMENT Application Note

INFRARED GAS SENSORS ANOOD7

ARDUINO to PLATINUM COMMS

HELP DOCUMENT

Dynament Limited
Hermitage Lane Industrial Estate :+ Kings Mill Way :+ Mansfield :+ Nottinghamshire + NG18 5ER : UK.
Tel: 44 (0)1623 663636

email: sales@dynament.com * www.dynament.com

ANO0007 Issue 1 13/10/2020 Change Note 678 Page 1 of 14

mailto:sales@dynament.com
http://www.dynament.com/

Contents

[N =Y =T o | T 1 (=T USRS 1
CONNECHNG thE SENSOKcciiiiice ettt st e e reesteebeaneenres 3
Y (o 1811 o 1 0 T SRR 5
(@00 [T btq o] F= T T= 11 0] o OSSPSR 9
PaCKet BreaKAOWNccuiiiiiiiicie ettt sttt st sne e sre e enes 11
(O [o IS T=T 1= U (== o [ISR 13

Advanced CONVErSION NOLES..........coiiiiiiieiieie et sae e nreas 14

ANO0007 Issue 1 13/10/2020 Change Note 678 Page 2 of 14

Connecting the Sensor

This data sheet uses the Arduino Mega as an example. The Ardunio Mega provides
more than one comm port, therefore comm port 1 is used to communicate with the
sensor and comm port O is used to print to the PC.

The Arduino uses 5v logic high whereas the Platinum Sensor uses 3.3v, so to
prevent damage to the Sensor a voltage divider must be used.

(ArduinoTransmit5v]

RL
Rik

(SensorReceive3.3v|

R2
R2k

Figure 1: Lowers the voltage to useable level

The Sensor transmit line going to the Arduino receive doesn’t need a divider as 3.3v
is an acceptable input to the Arduino.

In order to power the Sensor it must be connected to 5v and Ov. To do this you can
use the pins on the Arduino.

After this is complete, the sensor should now have the following pins connected:
5v -> 5v Arduino pin

Ov -> Arduino GND

Tx -> Arduino RX1

Rx -> Goes to the output of the potental divider. The input goes to Arduino Tx

ANO0007 Issue 1 13/10/2020 Change Note 678 Page 3 of 14

After this is complete your Platinum Sensor should be connected as shown:

(]

~

!

INOTLYIINNHAO) L
= > = -2
2 5
F o asmmn mmmmw mmmmm mmmww wa t
Illlll EEmEE EEEEE wEEEE - '-.
] RBEsI3a R CE XD
BALERE TR
gESEESEEEESESEEERSEEREN Ll o
M W oMWW E W e W EWEEEEENEEEW LR Y
" EEEE R E RN ER RN REEE R | o
e " ¥ M M M W W E NN AN NN EEEAN - .. ®

o % m s % omoE N EEEEEEENEUNNUENNEEEREE Y
— m W ® S S EEWEENSENSSEEESEEEEEEE
. W W 4 @@ @M e @ EEEESNESSEESNESENEEEEE

53333;2BN§855=55$5;¢‘:8° ﬂﬂﬂﬂﬂ ¢ n
Figure 2: Sensor is shown upside down with a solder adapter

If you are using an Arduino with only one comm port (like the Arduino Uno) you will
have to connect it to that, however when you use the serial monitor (shown later) it
will also show the hex that is transmitted.

ANO0007 Issue 1 13/10/2020 Change Note 678 Page 4 of 14

Arduino IDE
Go to the Arduino website and download the newest version of the Arduino IDE
software. Once installed you should see the following screen:

(&) sketch_feb26b | Arduino 1.8.12 - m} X

File Edit Sketch Tools Help

sketch_feb26h

vold setup() { ~
// put your setup code here, to run once:

}

void loop() {
// put your main code here, to run repeatedly:

Figure 3: Arduino home screen

In the tools drop down menu select the Arduino board, processor and port you are
using:

@ sketch_feb26b | Arduine 1.8.12 — [m| X

File Edit Sketch Tools Help

Auto Format Ctrl+T
Archive Sketch
sketch_fah6h Fix Encoding & Reload
void setup () Manage Libraries... Ctrl+ Shift+| "
H1PUE TOUE el Monitor Ctrl+ Shift+ M
} Serial Plotter Ctrl+Shift+L

void loop() I WiFI101 / WiFININA Firmware Updater

f/f put your

Board: "Arduino Mega or Mega 2360"] Boards Manager...

1 Processor: "ATmega2560 (Mega 2560)" 3 Arduino AVR Boards
Port: "COM17 {Arduine Mega or Mega 2560)" i Arduino Yin
Get Board Info Arduino Uno

Programmer: “AVRISP mill" Arduino Duemilanove or Diecimila

Burn Bootloader Arduine Nano

* Arduino Mega or Mega 2560
Arduino Mega ADK
Arduino Leonardo
Arduino Leonardo ETH
Arduino Micro
Arduino Esplora
Arduino Mini
Arduino Ethernet
Arduino Fio
Arduino BT

VAl g A_ac__nien

Figure 4: Select Board, Processor and Port options

Arduing M

ANO0007 Issue 1 13/10/2020 Change Note 678 Page 5 of 14

https://www.arduino.cc/en/main/software

Copy in this example code:
void send_read_live_data_simple();
void receive_read_live_data_simple();

void setup() {
Serial.begin(38400);
Seriall.begin(38400);

}

void loop() {
send_read_live_data_simple();
receive_read_live_data_simple();
delay(5000);

}

void send_read_live_data_simple(){
// 0x10, 0x13, 0x06, 0x10, Ox1F, 0x00, 0x58
Seriall.write(0x10);
Seriall.write(0x13);
Seriall.write(0x06);
Seriall.write(0x10);
Seriall.write(Ox1F);
Seriall.write(0x00);
Seriall.write(0x58);

}

void receive_read_live_data_simple()}{
while (Seriall.available())

{
Serial.print(Seriall.read(), HEX);

Serial.print("[");

}
Serial.printin();

}

ANO0007 Issue 1 13/10/2020 Change Note 678 Page 6 of 14

@ Platinum_Comms_Test | Arduino 1.8.12
File Edit Sketch Tools Help

Platinum_Comms_Test

void send_read live data_simple():
void receive_read live data simple():

void setup{) |
Serial
Seriall.b
1

33400);
n{38400) ;

void loop() {
send_read live data simple();
receive read_live_data simple();
delay (5000);

1

void send_read live_data_simple(){

Seriall.w:

1

void receive_read_live_data_simple{)m
while {Seriall.awvailakle{))
{
Serial.pri
Serial.p

}

Serial.println();

1

{Seriall.resad(), HEX);

/f 0xl0, 0x13, O0x06, 0x10, Ox1F, 0x00, 0x358

Click the arrow to upload the code to the Arduino.

After the Arduino has been programmed open the serial monitor.
@ Platinum_Comms_Test | Arduino 1,812

File Edit Sketch Tools Help

Auto Format Ctrl+T
Archive Sketch
Platinum_Con Fix Encoding & Reload
vold send rea Manage Libraries... Ctrl+Shift+1
Tl EREEITEL serial Monitor Ctrl+ Shift+M
Serial Plotter Ctrl+Shift+L

vold setup()
Serial.begi
Seriall.keg

WIFiIT107 / WiFIMINA Firrnware Updater

! Board: "Arduino Mega or Mega 2360" »

void loop() { Processor: "ATmega2360 (Mega 2360)" 2
send_read 1 Port: "COM17 (Arduino Mega or Mega 2560)" »
receive_rea Get Board Info
delay (5000)

! Programmer: "AVRISP mkll" »

vold send real _
ff 0xl0. 0x13.

ANO00O07 Issue 1

Burn Bootloader

Ox0&. O0xl0. Oxl1F. Ox00. 0x58

Figure 6: Open the Serial Monitor

13/10/2020

Change Note 678

Page 7 of 14

& com7

| s |

10|1R|2(4|0|0|0|EBIS1|B2|3D|10|1F|2]96]
10J1R12|41010101&IDT7IA3SISDILOILEI2]28]
10J1R12|41010101&IDT7IA3SISDILOILEI2]28]
10J1R12141010101AIDTIASISDILOILEI2]26]

Autoscrell] Show timestamp

|Newline « | 38400 baud

v|E Clear output i

Figure 7: The Serial Montor shows the packet that has been received

ANO00O07 Issue 1

13/10/2020

Change Note 678

Page 8 of 14

Code Explanation
The Arduino IDE uses C++ to program the Arduino.

vold send read live data simple();

vold recelve_read live data simple();
This line is a forward declaration. This is used to tell the Microcontroller that further
down in the program the ‘send_read_live_data_simple’ function and the
‘receive_read_live_data_simple’ function will be called.

void setup() |
Serial .begin (38400} ;
Seriall.kbegin(38400);

1

Next is the setup function. This code gets run only once on startup. It starts the
Serial0 and Seriall ports. Serial0 is what is shown in the serial monitor screen.
Seriall is the port to communicate with the sensor.
volid loop() |
gend read liwve data simple();
receive_read live_data_simple():
d=lay {5000} ;
1
This is the main loop, this code gets repeatedly looped. You can see by reading the
function names that it sends a request to read a simplified version of the live data
struct. Then it reads the receive port to read the reply. After this the Microcontroller
waits 5000mS.

wold send_read liwve data simple () {

S/ 0x10, 0x13, 0x06, Oxl0, Oxl1F, 0x00, Ox58
Seriall.write {0x10);
Seriall.write (0x13);
Seriall.write (0x0&);
Seriall.write (0x10);
Seriall.write (0x1F);
Seriall.write (0x00) >
Seriall.write {0x58) >

1
This function writes the request to get the live data simple struct to serial port 1. As
previously mentioned if you only have one serial port you should change Seriall to
Serial.
To see the full list of commands, refer to the Premier sensor Communications
protocol document. Here is the part of the document that tells you what to write for
this command:

1.5.2 Read live data simple

Send the lallowing byles

DLE, RD, Variable ID, DLE, EQF, Checksum High byte, Checksum low byte or K-S
010, Ox13, 006, Ox10, Ox1F, 0x00, Ox58

ANO0007 Issue 1 13/10/2020 Change Note 678 Page 9 of 14

vold receive read liwve data simple () {

while (Seriall.availakle())
Serial.print(Seriall.read(), HEX)
Serial.princ{™|"):

}

Serial.println();

1
This function loops the read function while there is still data to be received from the
Platinum Sensor. Seriall.read() reads the data from Seriall which is connected to
the sensor and prints it on SerialO so it can be seen on the serial monitor. The
character ‘|’ is then printed to break up each byte that is received to make it clearer
on the serial monitor.

After this is complete it writes a new line to the serial monitor.

ANO0007 Issue 1 13/10/2020 Change Note 678 Page 10 of 14

Packet Breakdown
Figure 8 and 9 show the output of a serial decoder connected to the receive and

transmit lines.

5.0

4.0

-0.25 0.25 075 1.25 175 2.25 275 3.25 375

Figure 9: Incoming Packet

Figure 10 and 11 show the outgoing and incoming hex respectively with a column
that shows which command it is.

Packet Data Command
1 10 DLE
2 13 RD
3 6 Variable ID
4 10 DLE
5 1F EOF
6 0 Checksum High
7 58 Checksum Low

Figure 10: Outgoing Packet Description

ANO0007 Issue 1 13/10/2020 Change Note 678 Page 11 of 14

Packet Data Command

1 10 DLE

2 1A DAT

3 8 Data Length
4q 4 Version

5 0 Version

6 4 Status Flags
7 0 Status Flags
8 0 Gas Reading
9 0 Gas Reading
10 TA Gas Reading
11 C3 Gas Reading
12 10 DLE

13 1F EOF

14 1 Checksum High
15 A Checksum Low

Figure 11: Incoming Packet Description

Please note the Gas reading is a decimal not an integer. This decimal is in IEEE-754
format, you can use an online converter like this to convert it. The gas value in this
case shows -250 (as it was in error mode at the time).

ANO0007 Issue 1 13/10/2020 Change Note 678 Page 12 of 14

https://babbage.cs.qc.cuny.edu/IEEE-754.old/32bit.html

Using Serial.read()

The previous code only printed the data received to the serial monitor, if you want to save the data in
variables you will need to do some further processing. The packet you receive is split into bytes,
because of this you will need to concatenate some of this data into variables.

Seriall.Read() returns an int (which for Arduino is 16 bits), however, only the first 8 bits are used.
Because of this we can copy it into a smaller data type that is only 8 bits, in this case | will use char.

char readByte = Seriall.r=ad():

for the packets that are only a byte long, this works fine:

Packet Data Command
1 10 DLE
2 1A DAT
3 8 Data Length

For the packets that are 2 bytes or 4 bytes long you will need to concatenate the data.

4 4 Version

5 0 Version

6 4 Status Flags
7 0 Status Flags
8 0 Gas Reading
9] Gas Reading
10 A Gas Reading
11 C3 Gas Reading

You can do this in a lot of different ways, here what | am going to do is left shift the data and then OR
it.

char readBytel = Seriall.read();
char readByte2 = Seriall.rsad();
int readInt = (int)readByte2 << 8 | readBytel;

Using this code, if readBytel is 0x34 and readByte2 is 0x12.

(int)readByte2 /I this converts the 0x12 into 0x0012.

(intreadByte2 << 8 /I this shifts the bits over by a byte making it 0x1200.
(int)readByte2 << 8 | readBytel // this then gets OR’ed, with 0x34 making 0x1234.

Another way to do this would be to put the values into an array and then convert the array into the
type you want:

ANO0007 Issue 1 13/10/2020 Change Note 678 Page 13 of 14

char readBytel = 0x00;

char readByte2 = 0x00;
char readByted = 0xTA;
char readByted = 0xC3;

char readArray[4]:

readirray[0] = readBytEld

readhrray[l] = readBytel;
readhrray[2] = readBytel;
readhrray[3] = readByted;
flocat gasBReading = Y({flcatV)readlArray;

chars are a byte long, whereas float is 4 bytes long. Because of this if we make an array of 4 chars
with our values in it and change the type to float.

In this case readArray is a pointer to a char array. (*readArray this part casts it to a pointer to a
float and then a * is added to the front to get the value of the float.

Advanced Conversion Notes

1. Serial.read() returns int instead of char because errors will return negative values. Your
program should check for this.

2. uint8_t and uint16_t should be used in place of char and int respectively, as these types do
not have a standard size (on my PC int is 32 bits whereas on the Arduino it is 16 bits).

3. The comms protocol contains byte stuffed characters (also known as control characters), this
is explained in more detail in the tds0045_1 51 Premier sensor Communications protocol
document. Because of this the read live data simple packet will occasionally be bigger than
expected.

ANO0007 Issue 1 13/10/2020 Change Note 678 Page 14 of 14

